• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada taxa de variação - HELP Por favor

Derivada taxa de variação - HELP Por favor

Mensagempor vivik » Ter Mai 15, 2018 16:47

01 – Se dois resistores com resistências R1 e R2 estão conectados em paralelo, temos que a sua
resistência equivalente será calculada por:

1/req = 1/R1+1/R2

Se R1 e R2 estão aumentando a taxas de 0,03 ohm/s e 0,02 ohm/s, respectivamente, quão
rápido Req está variando quando R1 = 80 ohm e R2 = 100 ohm?

O que eu faço? Substituo R1 por 80ohm e R2 POR 100ohm?

Onde esse 0,03 e 0,02 entra? Eu sei que tem que derivar em relação ao tempo, mas não sei como.
vivik
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mai 15, 2018 16:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Redes de Computadores
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.


cron