• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida sobre max/min em intervalo definido

Dúvida sobre max/min em intervalo definido

Mensagempor Eureka__ » Qua Mai 02, 2018 14:01

QUESTÃO: Seja f: D -> R, onde f(x, y) = 2x² + x + y² - 2.

b) Determine os pontos (x, y) pertencentes a D de máximo e mínimo absolutos de f, considerando D = {(x, y) pertencente a R2 | x² + y² <= 4}

Não sei prosseguir daqui ou se o raciocínio até então está correto, mas:
1 – Localizei o ponto crítico que é P(-1/4, 0)

2 – Identifiquei o intervalo em que x e y variam na dada circunferência de raio 2 no plano xy:
-2<=x<=2
-2<=y<=2

3 – Agora, segundo entendi dos teoremas pertinentes (Weierstrass) e algumas aulas que assisti bastaria aplicar a função nos extremos desse intervalo (fronteira). O problema é que todos exemplos foram dados usando retângulos e não sei se o raciocínio a seguir está correto para este caso.

Os pontos de estudo seriam:
f(x,-2), f(x,2), f(-2,y),f(2,y) e então bastaria pegar o menor e maior valor desses pontos calculados para x = -2, x= 2, y=-2 e y=2?
Eureka__
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mai 02, 2018 13:54
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 17 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}