• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Módulo máximo do gradiente

Módulo máximo do gradiente

Mensagempor thejotta » Qua Mai 02, 2018 10:51

Quais são os pontos da circunferência {x}^{2}+{y}^{2}=1 em que o gradiente de f(x,y)=\frac{{x}^{2}}{2}+{y}^{2} tem módulo máximo?


a)(0,-1) e (0,1)
b)(-1,0) e (1,0)
c)(-√2/2 , - √2/2) e (√2/2, √2/2)
d)(1,0) e (0,1)
e)(-1,0) e (0,-1)

Fiz o gradiente de F(x,y)=(x,2y), mas não sei como continuar para chegar nesse resultado.
O gabarito é letra A.

Se alguém puder me ajudar ficarei muito grato.
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Módulo máximo do gradiente

Mensagempor adauto martins » Sáb Mai 05, 2018 15:19

gradiente da circunferência (1):
\nabla {C}_{1}=(2x,2y) tem sempre o mesmo valor(pq?)...
gradiente de f(x):
F(x)=\nablaf(x) =(x,2y)...\nabla {C}_{1},F(x) são ortogonais(pq?),logo:
\nabla {C}_{1}. F(x)=0\Rightarrow 2{x}^{2}+ 4{y}^{2}=0...a solução da intersecao das circunf.teremos:
2{x}^{2}+4{y}^{2}=0

{x}^{2}+{y}^{2}=1
x=0,y=1,y=-1...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.