• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Interseção entre áreas (Integrais)

Interseção entre áreas (Integrais)

Mensagempor thejotta » Seg Abr 30, 2018 16:52

A área de A ∩ B, onde

A={ (x,y) ∈R2:0 ≤ x ≤ π/2, 0 ≤ y ≤ c o s x }

B={ (x, y) ∈R2: 0 < x < π/2, sin x ≤ y ≤ 1}

é igual a:

a)(√2 - 1) /2
b)√2 /2
c)√2 - 1
d)1
e)√2

Não estou conseguindo resolver essa questão, alguém pode me ajudar?

o que eu fiz: Calculei a área de
A = 1
B = π/2 -1

Sei que o gabarito é letra C. mas não sei como chegar nesse resultado.
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Interseção entre áreas (Integrais)

Mensagempor Gebe » Ter Mai 01, 2018 00:03

Sempre que possivel faça o desenho!
area.png
area.png (6.36 KiB) Exibido 1570 vezes


A area destacada é a pedida, portanto precisamos primeiramente achar onde as duas senoides se tocam, ou seja, sen(x) = cos(x).
Neste intervalo a intersecção acontece em pi/4 (ou 45°).

Agora para calcular a area de intersecção podemos calcular a area abaixo do cosseno entre 0 e pi/4 e subtrair a area abaixo do seno entre 0 e pi/4:
\\
area=\int_{0}^{\frac{pi}{4}}cos(x)dx-\int_{0}^{\frac{pi}{4}}sen(x)dx\\
\\
\\
area=\left[sen\left(\frac{pi}{4} \right)-sen(0) \right]-\left[-cos\left(\frac{pi}{4} \right)-\left( -cos(0) \right) \right]\\
\\
\\
area=\frac{\sqrt{2}}{2}-0+\frac{\sqrt{2}}{2}-1\\
\\
\\
area=\sqrt{2}-1

Espero ter ajudado, bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Interseção entre áreas (Integrais)

Mensagempor thejotta » Ter Mai 01, 2018 10:05

Muito obrigado. Agora consegui entender, que Deus te abençoe. :)
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Interseção entre áreas (Integrais)

Mensagempor Gebe » Ter Mai 01, 2018 22:51

:y:
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.