• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Centro de Massa delimitado superiormente e inferiormente

Centro de Massa delimitado superiormente e inferiormente

Mensagempor Janice123 » Sáb Abr 28, 2018 02:32

Determine o centro de massa do sólido delimitado superiormente pelo paraboloide z=3+x³+y², inferiormente pelo plano z=1 e pelo cilindro de equação x²+y²=9. Suponha que a densidade varie de forma diretamente proporcional com a distância de origem.

1) Tenho dificuldade em interpretar o sólido superiormente e não achei nenhum desenho que me ajudasse.
2) Vi que em alguns exercícios pedem pra descobrir o "z", mas aí na equação da questão ele já deu... imagino que seja para atribuir valores em x e y.
3) Pelas as equações das questões tentei deduzir o seguinte:
0\leqr\leq3
0\leq\theta\leq2\pi
0\leqz\leq1

(Não sei se está correto, mas provavelmente não, rss.. tenho algumas dúvidas nesse assunto, se puderem me ajudar, agradeço muito!!!)

PS: sou nova aqui desculpa os erros.. obrigada...
Janice123
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 28, 2018 01:57
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.