• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de Limites

Cálculo de Limites

Mensagempor Bruhh » Qui Abr 22, 2010 15:01

Alguém, por favor, me ajuda com os cálculos de limites?

Tenho, por exemplo, o limite abaixo:
Lim \frac{x³+3x²-x-3}{x³-x²+2}
x->-1

Se eu substituir -1 no denominador vou obter 0, então pelo método de Briot Rufini tento retirar a indeterminação, mas minha professora explicou que o último número deve zerar porém não é o que acontece:
-> primeiro repito o primeiro número para baixar o grau, depois multiplico 1 por -1 e somo com o -1 do x², que fica -2, depois o multiplico por -1 e somo com 2, o que vai resultar em 4, e não em zero como deveria ser!
x²-2x+4

Eu estou calculando errado ou último número pode ser qualquer número? O método do Rufini serve para baixar o grau de qualquer expressão?

Obrigada :y:
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Cálculo de Limites

Mensagempor MarceloFantini » Qui Abr 22, 2010 17:29

Bruh, eu fiz a divisão no braço em cima e embaixo por (x+1). e resultou que:

x^3 +3x^2 -x -3 = -3x(x+4)(x+1)
x^3 -x^2 +2 = 2x(x-2)(x+1)

Então temos que \lim_{x \to -1} = \frac {-3x(x+4)(x+1)} {2x(x-2)(x+1)} = \lim_{x \to -1} = \frac {-3 \cdot -1 \cdot (-1 +4)} {2 \cdot -1 \cdot (-1 -2)} = \frac {3}{2}

É prudente conferir minhas contas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Cálculo de Limites

Mensagempor Bruhh » Qui Abr 22, 2010 20:40

Bom na minha apostila o resultado é -\frac{4}{5}
Eu observei que se substituir -1 no numerador o resultado é -4, só no denominador que zera, mas eu já tentei por divisão de polinomio e por Rufini mas eu não consigo chegar no resultado nunca.
Voce sabe me dizer se o método de Rufini serve para todo o tipo de equação?E se tem que ser 0 o último número?


Obrigada
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Cálculo de Limites

Mensagempor Douglasm » Qui Abr 22, 2010 21:57

Olá Bruhh. Eu fiz pelo Briot-Ruffini e deu certinho, veja só:

-1 é raiz tanto do numerador quanto do denominador:

(-1)^3 + 3(-1)^2 - (-1) - 3 = 0

(-1)^3 - (-1)^2 + 2 = 0

Deste modo, sabemos que na fatoração de ambos os polinômios consta o fator (x+1). Agora devemos aplicar o método de Briot-Ruffini (e sim, ele serve para abaixar o grau de qualquer polinômio):

briotruffini.JPG
briotruffini.JPG (7.99 KiB) Exibido 8667 vezes


(N = numerador ; D = Denominador)

Simplificando, o algoritmo é composto dos seguintes passos:

1º - Colocar os coeficientes de x^n , x^{n-1}, x^{n-2}, etc. (sem esquecer das potências de x que possuem coeficiente igual a zero)

2º - Determinar um divisor (uma raiz do polinômio, no nosso caso o -1)

3º - Realizar as seguintes operações: Repetir o primeiro coeficiente na linha de baixo; Multiplicar o divisor por ele; Somar o resultado com o próximo coeficiente; Abaixar essa soma e repetir o processo até o final. (Por exemplo, a seqüencia de operações na divisão do numerador é: 1º. abaixar o 1 ; 2º. -1 . 1 = -1 ; 3º. -1 + 3 = 2 ; 4º. -1 . 2 = -2 ; 5º. -2 + (-1) = -3 ; 6º. -1 . -3 = 3 ; 7º. 3 + (-3) = 0)

Os números em vermelho são os novos coeficientes do polinômio. O limite agora toma a forma:

\lim_{x\rightarrow {-1}} \frac{(x^2 +2x -3)(x+1)}{(x^2 - 2x+2)(x+1)} = \lim_{x\rightarrow {-1}} \frac{x^2 +2x -3}{x^2 - 2x+2} = \frac{-4}{5}

Espero ter ajudado. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 51 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D