• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de comprimento

Cálculo de comprimento

Mensagempor Micheletti » Sáb Abr 07, 2018 23:26

Calcule o comprimento do arco da curva y= \frac{3 \sqrt[]{x}}{2} com 0 \leq x \leq1.

Fui fazendo o cálculo, achei a derivada de y, até que cheguei nessa equação: L=\int_{0}^{1}\sqrt[]{1+\frac{9}{16x}} dx, e, depois disso, não consegui fazer mais nada. Tentei até o método de substituição, substituindo o radicando por u, mas o resultado do dx deu \frac{{-16x}^{2}}{9}du, não sei como tirar esse {x}^{2} da integral. Gostaria que alguém pudesse me auxiliar a sair dessa integração.

A resposta do gabarito é: \frac{8}{27}*\sqrt[]{{\left(\frac{13}{4}\right)}}^{3}-1 u.c. ou aproximadamente 0,736 u.c.
Micheletti
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 07, 2018 22:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Aeronáutica
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)