• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Continuidade função de duas variáveis

Continuidade função de duas variáveis

Mensagempor ormatos » Sáb Abr 07, 2018 17:47

Boa tarde! estou com uma dúvida na seguinte questão.

f(x,y)= (x^2+y^2/ \sqrt{x^2+y^2+1} -1) para x e y diferentes de 0
f(x,y)=2; x=0, y=0

A dúvida é se ela é continua em (0,0). O ponto de indeterminação está definido, sendo assim tentei a regra dos caminhos, para achar algum limite diferente (não sei se isso é o correto a fazer). Usando x=2y e y=x^2 não cheguei a nada conclusivo, por exemplo.

Obrigado!
ormatos
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 07, 2018 17:30
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.