• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Continuidade] Todos os polinômios são contínuos em p?

[Continuidade] Todos os polinômios são contínuos em p?

Mensagempor DarioCViveiros » Qua Fev 21, 2018 17:28

Após uma leitura do livro "Um curso de cálculo - volume 1" de Guidorizzi, decidi verificar se todos os polinômios são contínuos para todo x\in Df através do uso de \epsilon-\delta. Gostaria de saber se a minha demonstração está certa e, se não estiver, quais os problemas.

Demonstração:
f(x)={a}_{0}{X}^{n}+{a}_{1}{X}^{n-1}+ ... + {a}_{n-1}X+{a}_{n} (1)

Onde:
\left({a}_{0},{a}_{1}, ... , {a}_{n-1}, {a}_{n} \right) \in \Re, e
n \in \aleph

logo,
f(x)={f}_{1}(x)+{f}_{2}(x)+ ... +{f}_{n}

sendo assim,
(p, f(p)) \in f \Leftrightarrow (p, f(p)) \in {f}_{1}, {f}_{2},..., {f}_{n} \Leftrightarrow \exists (\epsilon>0\rightarrow\delta>0)|\forall x\in {D}_{f} \rightarrow
\exists(I=]a,b[; p \in I)|x\in I\Rightarrow f(p)-\epsilon < f(x) < f(p) + \epsilon

com: \delta = min[b-p,p+a] \Rightarrow p - \delta < x < p + \delta
e: g(x)=a{x}^{b}, a \in \Re, b \in \aleph

sendo g(x) uma generalização das funções {f}_{n}(x) que formam a forma geral de um polinômio (1).

Logo:
x\in ]a,b[ \Rightarrow x \in ]b-p,p+a[ \Rightarrow p-\delta < x < p + \delta

e, para encontrar o intervalo aberto I que torna contínua a função g(x), toma-se

f(p)-\epsilon < f(x) < f(p) + \epsilon com f(p)=a{x}^{b}, que resulta:

a{p}^{b}-\epsilon<a{x}^{b}<a{p}^{b}+\epsilon\Rightarrow
\sqrt{\frac{a{p}^{b}-\epsilon}{a}}<x<\sqrt[b]{\frac{a{p}^{b}+\epsilon}{a}},

logo:
I=]\sqrt[b]{\frac{a{p}^{b}-\epsilon}{a}},\sqrt[b]{\frac{a{p}^{b}+\epsilon}{a}}[

o que implica que:

\exists(\epsilon>0\rightarrow\delta>0)|\forall x\in {D}_{f}\rightarrow\exists(I=]a,b[,p\in I)|x\in I\Rightarrow
f(p)-\epsilon<f(x)<f(p)+\epsilon

com: f(x)={a}_{0}{X}^{n}+{a}_{1}{X}^{n-1}+ ... + {a}_{n-1}X+{a}_{n},

comprovando que todo polinômio é contínuo \forall p \in {D}_{f}.


Baseie-me aqui nos métodos mostrados no próprio livro, o qual envolve um intervalo aberto no domínio da função, ainda que não tenha encontrado referências a este em outras fontes, como em "Calculus" de Spivak.
Espero receber críticas à minha demonstração em breve, de forma que possa aprimorar o meu conhecimento sobre continuidade. Agradeço desde já. :y:
DarioCViveiros
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Fev 21, 2018 16:33
Localização: PI
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.