• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Continuidade] Todos os polinômios são contínuos em p?

[Continuidade] Todos os polinômios são contínuos em p?

Mensagempor DarioCViveiros » Qua Fev 21, 2018 17:28

Após uma leitura do livro "Um curso de cálculo - volume 1" de Guidorizzi, decidi verificar se todos os polinômios são contínuos para todo x\in Df através do uso de \epsilon-\delta. Gostaria de saber se a minha demonstração está certa e, se não estiver, quais os problemas.

Demonstração:
f(x)={a}_{0}{X}^{n}+{a}_{1}{X}^{n-1}+ ... + {a}_{n-1}X+{a}_{n} (1)

Onde:
\left({a}_{0},{a}_{1}, ... , {a}_{n-1}, {a}_{n} \right) \in \Re, e
n \in \aleph

logo,
f(x)={f}_{1}(x)+{f}_{2}(x)+ ... +{f}_{n}

sendo assim,
(p, f(p)) \in f \Leftrightarrow (p, f(p)) \in {f}_{1}, {f}_{2},..., {f}_{n} \Leftrightarrow \exists (\epsilon>0\rightarrow\delta>0)|\forall x\in {D}_{f} \rightarrow
\exists(I=]a,b[; p \in I)|x\in I\Rightarrow f(p)-\epsilon < f(x) < f(p) + \epsilon

com: \delta = min[b-p,p+a] \Rightarrow p - \delta < x < p + \delta
e: g(x)=a{x}^{b}, a \in \Re, b \in \aleph

sendo g(x) uma generalização das funções {f}_{n}(x) que formam a forma geral de um polinômio (1).

Logo:
x\in ]a,b[ \Rightarrow x \in ]b-p,p+a[ \Rightarrow p-\delta < x < p + \delta

e, para encontrar o intervalo aberto I que torna contínua a função g(x), toma-se

f(p)-\epsilon < f(x) < f(p) + \epsilon com f(p)=a{x}^{b}, que resulta:

a{p}^{b}-\epsilon<a{x}^{b}<a{p}^{b}+\epsilon\Rightarrow
\sqrt{\frac{a{p}^{b}-\epsilon}{a}}<x<\sqrt[b]{\frac{a{p}^{b}+\epsilon}{a}},

logo:
I=]\sqrt[b]{\frac{a{p}^{b}-\epsilon}{a}},\sqrt[b]{\frac{a{p}^{b}+\epsilon}{a}}[

o que implica que:

\exists(\epsilon>0\rightarrow\delta>0)|\forall x\in {D}_{f}\rightarrow\exists(I=]a,b[,p\in I)|x\in I\Rightarrow
f(p)-\epsilon<f(x)<f(p)+\epsilon

com: f(x)={a}_{0}{X}^{n}+{a}_{1}{X}^{n-1}+ ... + {a}_{n-1}X+{a}_{n},

comprovando que todo polinômio é contínuo \forall p \in {D}_{f}.


Baseie-me aqui nos métodos mostrados no próprio livro, o qual envolve um intervalo aberto no domínio da função, ainda que não tenha encontrado referências a este em outras fontes, como em "Calculus" de Spivak.
Espero receber críticas à minha demonstração em breve, de forma que possa aprimorar o meu conhecimento sobre continuidade. Agradeço desde já. :y:
DarioCViveiros
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Fev 21, 2018 16:33
Localização: PI
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 23 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59