• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada]regra da cadeia

[Derivada]regra da cadeia

Mensagempor principiante » Dom Fev 04, 2018 10:28

Pessoal, bom dia.

Estou com uma dúvida para interpretar uma função a ser derivada pela regra da cadeia.

Derive: y=(lnx+1)^3

No meu entendimento, levando em consideração a forma que a função foi enunciada, caberia duas interpretações para a função, e, consequentemente, duas respostas diferentes:

(i) y=[ln(x+1)]^3

e/ou

(ii) y=[ln(x)+1]^3

Por favor, qual delas seria a correta?

Obrigado.
principiante
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Fev 04, 2018 10:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Derivada]regra da cadeia

Mensagempor Baltuilhe » Dom Fev 04, 2018 21:02

Boa tarde!

Da forma com está escrita:
y = \left( \ln x + 1 \right) ^ 3

Não há dúvidas que NÃO pode ser a forma:
y = \left( \ln \left( x + 1 \right) \right) ^ 3

Pois não havia parênteses, ok?

Aproveitando o ensejo, a derivada pela regra da cadeia pode ser calculada:
\\y = \left( u \right) ^ 3\\\\
u = \ln x + 1\\\\
\dfrac{ dy }{ dx } = \dfrac{ dy }{ du } \cdot \dfrac{ du }{ dx }\\\\
\dfrac{ dy }{ dx } = 3u^2 \cdot \dfrac{ 1 }{ x }\\\\
\dfrac{ dy }{ dx } = 3 \cdot \left( \ln x + 1 \right) ^ 2 \cdot \dfrac{ 1 }{ x }\\\\
\boxed{ \dfrac{ dy }{ dx } = \dfrac{ 3 \cdot \left( \ln x + 1 \right) ^ 2 }{ x } }

Espero ter ajudado!
Baltuilhe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Dom Mar 24, 2013 21:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?