• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CALCULO 1 integral

CALCULO 1 integral

Mensagempor rebekrl » Dom Dez 17, 2017 14:37

Um país tem 100 bilhões de metros cúbicos de reserva de gás natural. Se A(t) denota o total de gás consumido após t anos, então dA/dt é a taxa de consumo. Se a taxa de consumo é prevista pela equação dA/ dt = 5+ 0,01t bilhões de metros cúbicos por ano, calcule o tempo aproximado (em anos) em que as reservas estarão esgotadas.(res:19,62)
Primeiro eu resolvi a integral da função dada na questão, obtendo: 5t+0,005t²+C

Eu peguei o que eu achei e igualei a 100.
100=5t+0,005t²
5t+0,005t²-100


Resolvi usando o método de Bhaskara e o resultado é t=4,47 t'=-4,47

Não estou conseguindo chegar ao resultado.
rebekrl
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Dez 17, 2017 14:21
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia ambiental
Andamento: cursando

Re: CALCULO 1 integral

Mensagempor jbandrade1618 » Qui Jan 11, 2018 12:46

A resolução da integral está correta, porém seu erro foi ao realizar a Bhaskara, refaça-a e você encontrará o resultado sem problemas.

\Rightarrow t=\frac{-5+\sqrt[2]{{5}^{2}-4.(0,005).(-100)}}{2.(0,005)}= \frac{-5+5,1962}{0,01}= \frac{0,1962}{0,01}=19,62
\Rightarrow t=19,62

Espero ter ajudado. :y:
jbandrade1618
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 11, 2018 01:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}