• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CALCULO 1 integral

CALCULO 1 integral

Mensagempor rebekrl » Dom Dez 17, 2017 14:37

Um país tem 100 bilhões de metros cúbicos de reserva de gás natural. Se A(t) denota o total de gás consumido após t anos, então dA/dt é a taxa de consumo. Se a taxa de consumo é prevista pela equação dA/ dt = 5+ 0,01t bilhões de metros cúbicos por ano, calcule o tempo aproximado (em anos) em que as reservas estarão esgotadas.(res:19,62)
Primeiro eu resolvi a integral da função dada na questão, obtendo: 5t+0,005t²+C

Eu peguei o que eu achei e igualei a 100.
100=5t+0,005t²
5t+0,005t²-100


Resolvi usando o método de Bhaskara e o resultado é t=4,47 t'=-4,47

Não estou conseguindo chegar ao resultado.
rebekrl
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Dez 17, 2017 14:21
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia ambiental
Andamento: cursando

Re: CALCULO 1 integral

Mensagempor jbandrade1618 » Qui Jan 11, 2018 12:46

A resolução da integral está correta, porém seu erro foi ao realizar a Bhaskara, refaça-a e você encontrará o resultado sem problemas.

\Rightarrow t=\frac{-5+\sqrt[2]{{5}^{2}-4.(0,005).(-100)}}{2.(0,005)}= \frac{-5+5,1962}{0,01}= \frac{0,1962}{0,01}=19,62
\Rightarrow t=19,62

Espero ter ajudado. :y:
jbandrade1618
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 11, 2018 01:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}