• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral tripla, encontrar os limites de integração

Integral tripla, encontrar os limites de integração

Mensagempor sumnvr » Seg Dez 11, 2017 18:48

Gostaria de saber como encontrar os limites de integração do r em coordenadas cilíndricas quando ele não está explicito, por exemplo, no exercício que vou colocar abaixo na resolução a professora igualou o z à 1 para encontrar o limite de 0 à √2, o que quero saber é o porquê de ela ter igualado o z à 1, se tem alguma regra ou algo do tipo.

Exercício: Use integral tripla em coordenadas cilíndricas para calcular ∫∫∫dV, onde T é uma região limitada acima pelo hemisfério x²+y²+z²=3, abaixo pelo xy e lateralmente pelo cilindro x²+y²=2z
Anexos
questao 4.jpg
Resolução da questão
sumnvr
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Dez 11, 2017 18:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.