• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral tripla, encontrar os limites de integração

Integral tripla, encontrar os limites de integração

Mensagempor sumnvr » Seg Dez 11, 2017 18:48

Gostaria de saber como encontrar os limites de integração do r em coordenadas cilíndricas quando ele não está explicito, por exemplo, no exercício que vou colocar abaixo na resolução a professora igualou o z à 1 para encontrar o limite de 0 à √2, o que quero saber é o porquê de ela ter igualado o z à 1, se tem alguma regra ou algo do tipo.

Exercício: Use integral tripla em coordenadas cilíndricas para calcular ∫∫∫dV, onde T é uma região limitada acima pelo hemisfério x²+y²+z²=3, abaixo pelo xy e lateralmente pelo cilindro x²+y²=2z
Anexos
questao 4.jpg
Resolução da questão
sumnvr
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Dez 11, 2017 18:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.