• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Pontos onde a reta Tangente é vertical:

Pontos onde a reta Tangente é vertical:

Mensagempor gabrielb44 » Sáb Nov 18, 2017 20:35

Considere a lemniscata de equação:

(x^2+y^2)^2 = x^2-y^2

Determine os dois pontos da lemniscata em que as tangentes são verticais.

Eu adaptei o problema, o original pedia também os pontos em que a reta tangente é horizontal, mas esses pontos eu consegui achar.
Já procurei na internet mas não achei nenhum lugar que explica como achar os pontos em que a reta tangente é vertical.
Se alguém poder pelo menos me explicar como descobrir os pontos em que a reta é vertical me ajudaria bastante.
Grato.

Gabriel Leite
Estudante de Ciência da Computação
gabrielb44
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Nov 18, 2017 20:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computção
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.