• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Pontos onde a reta Tangente é vertical:

Pontos onde a reta Tangente é vertical:

Mensagempor gabrielb44 » Sáb Nov 18, 2017 20:35

Considere a lemniscata de equação:

(x^2+y^2)^2 = x^2-y^2

Determine os dois pontos da lemniscata em que as tangentes são verticais.

Eu adaptei o problema, o original pedia também os pontos em que a reta tangente é horizontal, mas esses pontos eu consegui achar.
Já procurei na internet mas não achei nenhum lugar que explica como achar os pontos em que a reta tangente é vertical.
Se alguém poder pelo menos me explicar como descobrir os pontos em que a reta é vertical me ajudaria bastante.
Grato.

Gabriel Leite
Estudante de Ciência da Computação
gabrielb44
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Nov 18, 2017 20:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computção
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 19 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?