• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral de uma Aceleração

Integral de uma Aceleração

Mensagempor Atirador » Sáb Nov 18, 2017 18:36

Boa tarde,

estou estudando um artigo sobre a influência da resistência do ar em uma trajetória de lançamento oblíquo.
Acontece que não compreendi como o autor do artigo chegou a integral de uma função.

Imagem

Ele integrou a função (5) que dá a aceleração da partícula:
f(x)=-\beta\upsilon x

Dados:
\beta = \frac{b}{m}
Onde b é uma constante da Força de Resistência do Ar,
e m é a massa da partícula.

Força Resistência Ar = -b\upsilon

Sendo F = m * a, ao dividir por m (massa) vou ter apenas a aceleração. No caso, a função (5).

Sabendo que:
vx = v0cos\theta

Então a função que foi integrada, me parece que foi:
a(t) = -\beta v0cos\theta

E a função obtida foi:
vx(t) = (v0cos\theta){e}^{-\beta t}

Gostaria de compreender como ele chegou a esse resultado através de integral.
Compreendo que a integral da equação da aceleração em função do tempo será a equação da velocidade em função do tempo.
Não compreendi as substituições que foram utilizadas.
Obrigado.
Atirador
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Out 01, 2017 03:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Militares
Andamento: formado

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)