• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral de uma Aceleração

Integral de uma Aceleração

Mensagempor Atirador » Sáb Nov 18, 2017 18:36

Boa tarde,

estou estudando um artigo sobre a influência da resistência do ar em uma trajetória de lançamento oblíquo.
Acontece que não compreendi como o autor do artigo chegou a integral de uma função.

Imagem

Ele integrou a função (5) que dá a aceleração da partícula:
f(x)=-\beta\upsilon x

Dados:
\beta = \frac{b}{m}
Onde b é uma constante da Força de Resistência do Ar,
e m é a massa da partícula.

Força Resistência Ar = -b\upsilon

Sendo F = m * a, ao dividir por m (massa) vou ter apenas a aceleração. No caso, a função (5).

Sabendo que:
vx = v0cos\theta

Então a função que foi integrada, me parece que foi:
a(t) = -\beta v0cos\theta

E a função obtida foi:
vx(t) = (v0cos\theta){e}^{-\beta t}

Gostaria de compreender como ele chegou a esse resultado através de integral.
Compreendo que a integral da equação da aceleração em função do tempo será a equação da velocidade em função do tempo.
Não compreendi as substituições que foram utilizadas.
Obrigado.
Atirador
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Out 01, 2017 03:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Militares
Andamento: formado

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.