• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral de uma Aceleração

Integral de uma Aceleração

Mensagempor Atirador » Sáb Nov 18, 2017 18:36

Boa tarde,

estou estudando um artigo sobre a influência da resistência do ar em uma trajetória de lançamento oblíquo.
Acontece que não compreendi como o autor do artigo chegou a integral de uma função.

Imagem

Ele integrou a função (5) que dá a aceleração da partícula:
f(x)=-\beta\upsilon x

Dados:
\beta = \frac{b}{m}
Onde b é uma constante da Força de Resistência do Ar,
e m é a massa da partícula.

Força Resistência Ar = -b\upsilon

Sendo F = m * a, ao dividir por m (massa) vou ter apenas a aceleração. No caso, a função (5).

Sabendo que:
vx = v0cos\theta

Então a função que foi integrada, me parece que foi:
a(t) = -\beta v0cos\theta

E a função obtida foi:
vx(t) = (v0cos\theta){e}^{-\beta t}

Gostaria de compreender como ele chegou a esse resultado através de integral.
Compreendo que a integral da equação da aceleração em função do tempo será a equação da velocidade em função do tempo.
Não compreendi as substituições que foram utilizadas.
Obrigado.
Atirador
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Out 01, 2017 03:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Militares
Andamento: formado

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}