• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada]

[Derivada]

Mensagempor violettav » Qui Nov 02, 2017 16:21

Seja g uma funcao derivavel e f(x) = (cos x) * g²(tg (x / (x² + 2)). Sabendo que g(0) = 1/2 e g'(0) = 1, calcule f ' (0).

resposta : 1/2
violettav
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 02, 2017 16:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia da Computaçao
Andamento: cursando

Re: [Derivada]

Mensagempor jbandrade1618 » Qui Jan 11, 2018 14:00

Olá Violetta.

Essa questão pede um pouco de paciência e organização para aplicar a regra da cadeia. Como o x da função será sempre substituído por zero, será fácil no final substituir os valores.

Resolução:
f'(x)=df(x)=dcos(x)*{g}^{2}\left( tg\left(\frac{x}{{x}^{2}+2} \right)\right)+cos(x)*2g\left( tg\left(\frac{x}{{x}^{2}+2} \right)\right)*dtg\left(\frac{x}{{x}^{2}+2} \right)*d\left(\frac{x}{{x}^{2}+2} \right)
\Rightarrow f'(x)=-sen(x)*{g}^{2}\left( tg\left(\frac{x}{{x}^{2}+2} \right)\right)+cos(x)*2g\left( tg\left(\frac{x}{{x}^{2}+2} \right)\right)*{sec}^{2}\left(\frac{x}{{x}^{2}+2} \right)*\left(\frac{-{x}^{2}+2}{{({x}^{2}+2})^{2}}\right)

Agora basta substituir x por zero:
f'(0)=-sen(0)*{g}^{2}\left( tg\left(\frac{0}{{0}^{2}+2} \right)\right)+cos(0)*2g\left( tg\left(\frac{0}{{0}^{2}+2} \right)\right)*{sec}^{2}\left(\frac{0}{{0}^{2}+2} \right)*\left(\frac{-{0}^{2}+2}{{({0}^{2}+2})^{2}}\right)
\Rightarrow f'(0)=0*{g}^{2}(0)+1*2g(0)*{sec}^{2}(0)*\left(\frac{2}{4}\right)=1*2*\frac{1}{2}*{1}^{2}*\frac{1}{2}=\frac{1}{2}
\Rightarrow f'(0)=\frac{1}{2}

Espero ter ajudado. :y:
jbandrade1618
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 11, 2018 01:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.


cron