• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada]

[Derivada]

Mensagempor violettav » Qui Nov 02, 2017 16:21

Seja g uma funcao derivavel e f(x) = (cos x) * g²(tg (x / (x² + 2)). Sabendo que g(0) = 1/2 e g'(0) = 1, calcule f ' (0).

resposta : 1/2
violettav
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 02, 2017 16:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia da Computaçao
Andamento: cursando

Re: [Derivada]

Mensagempor jbandrade1618 » Qui Jan 11, 2018 14:00

Olá Violetta.

Essa questão pede um pouco de paciência e organização para aplicar a regra da cadeia. Como o x da função será sempre substituído por zero, será fácil no final substituir os valores.

Resolução:
f'(x)=df(x)=dcos(x)*{g}^{2}\left( tg\left(\frac{x}{{x}^{2}+2} \right)\right)+cos(x)*2g\left( tg\left(\frac{x}{{x}^{2}+2} \right)\right)*dtg\left(\frac{x}{{x}^{2}+2} \right)*d\left(\frac{x}{{x}^{2}+2} \right)
\Rightarrow f'(x)=-sen(x)*{g}^{2}\left( tg\left(\frac{x}{{x}^{2}+2} \right)\right)+cos(x)*2g\left( tg\left(\frac{x}{{x}^{2}+2} \right)\right)*{sec}^{2}\left(\frac{x}{{x}^{2}+2} \right)*\left(\frac{-{x}^{2}+2}{{({x}^{2}+2})^{2}}\right)

Agora basta substituir x por zero:
f'(0)=-sen(0)*{g}^{2}\left( tg\left(\frac{0}{{0}^{2}+2} \right)\right)+cos(0)*2g\left( tg\left(\frac{0}{{0}^{2}+2} \right)\right)*{sec}^{2}\left(\frac{0}{{0}^{2}+2} \right)*\left(\frac{-{0}^{2}+2}{{({0}^{2}+2})^{2}}\right)
\Rightarrow f'(0)=0*{g}^{2}(0)+1*2g(0)*{sec}^{2}(0)*\left(\frac{2}{4}\right)=1*2*\frac{1}{2}*{1}^{2}*\frac{1}{2}=\frac{1}{2}
\Rightarrow f'(0)=\frac{1}{2}

Espero ter ajudado. :y:
jbandrade1618
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 11, 2018 01:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: