• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvidas sobre equações pares e impares

Duvidas sobre equações pares e impares

Mensagempor Ricley » Qui Nov 02, 2017 00:13

Com relação as equações pares e impares a suas implicações nas integrais de Fourier, considere as seguintes afirmações:
1 Se a função for par, é possível utilizar somente um dos limites de integração e multiplica-lo por dois
2 Se a função for ímpar, o resultado da integral será zero.
3 Convém analisar se a função é par ou ímpar antes de iniciar a resolução da integral para simplificar as etapas de cálculo.

Quais das afirmativas acima são verdadeiras? Justifique.
Ricley
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Nov 01, 2017 23:46
Formação Escolar: GRADUAÇÃO
Área/Curso: BACHARELADO EM ENGENHARIA ELÉTRICA
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}


cron