• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Trabalho utilizando a Lei de Hooke

[Integral] Trabalho utilizando a Lei de Hooke

Mensagempor YaraTavares » Qui Out 19, 2017 00:47

Em questões anteriores e em seus exemplos, utiliza a expressão para o cálculo do trabalho W =\int_{} Fdx
Em que a força é constante nesse pequeno comprimento de mola esticada. Mas nessa questão a mola está se contraindo, mas não encontro a razão da resposta não bater.

A questão é a seguinte:
Uma mola suportando um carro tem comprimento natural de 38 cm e uma força de 36.000 N comprime-a 1,5 cm. Determine o trabalho realizado para comprimi-Ia de 38 cm a 22 cm. (A Lei de Hooke e valida para molas comprimidas assim como para mol as esticadas).
F= Kx
36000=K(0,015)
K=24.10^5
W =\int_{} Fdx
W=\int_{-\-0,16}^0 24.10^{5}xdx
W=24.10^{5}\frac{0,016^{2}}{2}dx
W=30720J

Resposta certa: 8100J

O livro é Cálculo com Geometria Analítica de Simmons, página 340.
YaraTavares
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Out 19, 2017 00:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59