• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Trabalho utilizando a Lei de Hooke

[Integral] Trabalho utilizando a Lei de Hooke

Mensagempor YaraTavares » Qui Out 19, 2017 00:47

Em questões anteriores e em seus exemplos, utiliza a expressão para o cálculo do trabalho W =\int_{} Fdx
Em que a força é constante nesse pequeno comprimento de mola esticada. Mas nessa questão a mola está se contraindo, mas não encontro a razão da resposta não bater.

A questão é a seguinte:
Uma mola suportando um carro tem comprimento natural de 38 cm e uma força de 36.000 N comprime-a 1,5 cm. Determine o trabalho realizado para comprimi-Ia de 38 cm a 22 cm. (A Lei de Hooke e valida para molas comprimidas assim como para mol as esticadas).
F= Kx
36000=K(0,015)
K=24.10^5
W =\int_{} Fdx
W=\int_{-\-0,16}^0 24.10^{5}xdx
W=24.10^{5}\frac{0,016^{2}}{2}dx
W=30720J

Resposta certa: 8100J

O livro é Cálculo com Geometria Analítica de Simmons, página 340.
YaraTavares
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Out 19, 2017 00:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)