• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Reta tangente

Reta tangente

Mensagempor Joao buck » Sáb Out 07, 2017 17:40

Nao estou conseguindo entender como resolver esse exercicio, ajuda pf:
Encontre as equaçoes das retas tangendes a elipse x² + 4y²=36 que passam pelo ponto (12,3)
Joao buck
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Out 07, 2017 17:37
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: engenharia de materiais
Andamento: cursando

Re: Reta tangente

Mensagempor nakagumahissao » Seg Fev 26, 2018 20:04

Esta é uma questão um tanto difícil de ser resolvida.

Vamos partir do fato que, derivando implicitamente a equação, teremos como declividade:

{x}^{2} + 4{y}^{2}=36 \Rightarrow 2xdx + 8ydy = 0 \Rightarrow \frac{dx}{dy} = -\frac{x}{4y}

Agora, vamos isolar 4{y}^{2}
4{y}^{2} = 36 - {x}^{2} \: \: \:  [1]

A Equação da reta em qualquer ponto da elipse deverá ser:

y - {y}_{0} = \frac{dy}{dx}\left(x - {x}_{0} \right)

Sabemos um ponto desta reta (12, 3). Utilizando este ponto na equação acima, teremos:

{y}_{0} = 3, \: \: {x}_{0} = 12, \: \: y - 3 = -\frac{x}{4y}\left(x - 12 \right)

Resolvendo:

4{y}^{2} - 12y = -{x}^{2} + 12x

Usando o fato [1] acima nesta última equação, tem-se que:

(36 - {x}^{2}) - 12y = -{x}^{2} + 12x

12y = - 12x + 36

y = - x + 3

Substituindo-se este resultado para y em nossa equação original do problema, obtem-se:

{x}^{2} + 4{(- x + 3)}^{2} = 36

{x}^{2} + 4\left({x}^{2} - 6x + 9 \right) = 36

{x}^{2} + 4{x}^{2} - 24x + 36=  36

5{x}^{2} - 24x = 0

{x}^{2} - \frac{24}{5}x = 0 \Rightarrow x\left(x - \frac{24}{5} \right) = 0

Dessa maneira,

x = 0 \:\: ou \:\: x = \frac{24}{5}

O que é esperado.

Logo, y, tomando-se x = 0, deverá ser y = 3. Ponto (0, 3). E para x = 24/5, e como:

y = - x + 3

então, y deverá ser:

y = -x + 3 = -\frac{24}{5} + 3 = -\frac{9}{5}


Assim, agora podemos obter finalmente o que nos foi solicitado, ou seja, as equações das retas tangentes que passam pelo ponto (12, 3).

Para a primeira reta que passa pela elipse tocando em (0, 3) teremos:

\frac{dy}{dx} = -\frac{x}{4y} = -\frac{0}{3} = 0

y - {y}_{0} = \frac{dy}{dx}\left(x - {x}_{0} \right)

y - 3 =0 \cdot \left(x - 0 \right)

y = 3

que é a equação da primeira reta que passa no ponto (0,3) e também pelo ponto (12,3).

Utilizando (24/5, -9/5), a declividade serã de:

\frac{dy}{dx} = - \frac{x}{4y} = - \frac{\frac{24}{5}}{-4 \cdot \frac{9}{5}} = \frac{2}{3}

e a reta que passa por este ponto (24/5, -9/5) e também pelo ponto (12, 3) deverá ser:

y + \frac{9}{5} = \frac{2}{3}(x - \frac{24}{5}) \Rightarrow y = \frac{2}{3}x -5


Assim, a segunta equação de reta será


y = \frac{2}{3}x -5


O método que utilizei é um tanto longa e trabalhosa. Pode ser que existam meios mais rápidos e eficientes de se resolver este problema, porém isto é o que me veio em mente. Espero ter ajudado.

Se desejar ver o grafico e essas tangentes, acesse http://simples.zapto.org/?p=675
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 384
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.