• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada de raiz quadrada de 2x

Derivada de raiz quadrada de 2x

Mensagempor Bia70 » Dom Out 01, 2017 11:49

Boa tarde, preciso que alguém me esclareça qual é a forma mais correta de derivar \sqrt2x[]{}. Eu estava a transformar a raiz numa potência e posteriormente a derivar a mesma. No entanto encontrei outra resolução em que tranformam a raiz quadrada de 2x num produto de raizes e só posteriormente derivam segundo a regra do produto. Ambas as resoluções me parecem corretas mas os resultados finais são diferentes. Conseguem-me dizer qual a forma mais correta? Obrigada
Bia70
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Out 01, 2017 11:15
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenciatura gestão de empresas
Andamento: formado

Re: Derivada de raiz quadrada de 2x

Mensagempor DanielFerreira » Dom Out 08, 2017 20:42

Olá Bia, seja bem-vinda!

Ambas estão corretas; provavelmente, uma resposta teve o denominador racionalizado e a outra não. Não há uma forma mais correta de solucionar... Só precisa aplicar as 'ferramentas' que mais lhe agrade (ou que te passe mais confiança ao resolver).

Possíveis respostas:

\bullet \qquad \mathbf{\frac{\sqrt{2}}{2\sqrt{x}}}

\bullet \qquad \mathbf{\frac{\sqrt{2}}{2} \cdot x^{- \frac{1}{2}}}

\bullet \qquad \mathbf{\frac{\sqrt{2x}}{2x}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1679
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Derivada de raiz quadrada de 2x

Mensagempor Bia70 » Seg Out 09, 2017 21:11

Obrigado Daniel.
Bia70
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Out 01, 2017 11:15
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenciatura gestão de empresas
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: