• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Achar a Equação de uma reta tangente

Achar a Equação de uma reta tangente

Mensagempor Gabriela Amaral » Dom Set 10, 2017 13:41

Gostaria que me mostrasse o erro, pois a resposta no gabarito é y = x + 3.
Refiz várias vezes e não cheguei na resposta acima.

Determine a equação da reta que seja tangente à curva da função dada no ponto especificado:


f(x)=({x}^{2}-x)(3+2x); \  (-1;2)
f(x)=3{x}^{2}+2{x}^{2}-3x-2{x}^{2}\\
f'(x)=6x+4x-3-4x\\
f(-1)=6(-1)+4(-1)-3-4(-1)\\
f(-1)=-6-4-3+4\\
f(-1)=-9

y-yo=m(x-xo)\\
y-2=-9(x+1)\\
y-2=-9x-9\\
y=-9x-9+2\\
y=-9x-7 *-)
Gabriela Amaral
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Set 10, 2017 13:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Achar a Equação de uma reta tangente

Mensagempor Gabriela Amaral » Dom Set 10, 2017 18:47

Consegui achar a resposta ! :-D :idea:
Deve ser usada a regra do Produto ! (até então não conhecia, visto que somente agora avancei nos exercícios propostos pelo meu professor)
Então, lá vai :

f(x)= ({x}^{2}-x)(3+2x); \ (-1;2)\\
f'(x)= u'\ . v + v'\ . u
f'(x)=(2x-1)(3+2x)+2({x}^{2}-x)\\
f'(x)=6x+4{x}^{2}-3-2x+2{x}^{2}-2x\\
f'(x)=2x+6{x}^{2}-3\\
f(-1)=2(-1)+6{-1}^{2}-3\\
f(-1)=-2+6-3\\
f(-1)=1\\
\\
y-yo=m(x-xo)\\
y-2=1(x+1)\\
y=x+1+2
y=x+3 ;)
Gabriela Amaral
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Set 10, 2017 13:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.