• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Achar a Equação de uma reta tangente

Achar a Equação de uma reta tangente

Mensagempor Gabriela Amaral » Dom Set 10, 2017 13:41

Gostaria que me mostrasse o erro, pois a resposta no gabarito é y = x + 3.
Refiz várias vezes e não cheguei na resposta acima.

Determine a equação da reta que seja tangente à curva da função dada no ponto especificado:


f(x)=({x}^{2}-x)(3+2x); \  (-1;2)
f(x)=3{x}^{2}+2{x}^{2}-3x-2{x}^{2}\\
f'(x)=6x+4x-3-4x\\
f(-1)=6(-1)+4(-1)-3-4(-1)\\
f(-1)=-6-4-3+4\\
f(-1)=-9

y-yo=m(x-xo)\\
y-2=-9(x+1)\\
y-2=-9x-9\\
y=-9x-9+2\\
y=-9x-7 *-)
Gabriela Amaral
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Set 10, 2017 13:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Achar a Equação de uma reta tangente

Mensagempor Gabriela Amaral » Dom Set 10, 2017 18:47

Consegui achar a resposta ! :-D :idea:
Deve ser usada a regra do Produto ! (até então não conhecia, visto que somente agora avancei nos exercícios propostos pelo meu professor)
Então, lá vai :

f(x)= ({x}^{2}-x)(3+2x); \ (-1;2)\\
f'(x)= u'\ . v + v'\ . u
f'(x)=(2x-1)(3+2x)+2({x}^{2}-x)\\
f'(x)=6x+4{x}^{2}-3-2x+2{x}^{2}-2x\\
f'(x)=2x+6{x}^{2}-3\\
f(-1)=2(-1)+6{-1}^{2}-3\\
f(-1)=-2+6-3\\
f(-1)=1\\
\\
y-yo=m(x-xo)\\
y-2=1(x+1)\\
y=x+1+2
y=x+3 ;)
Gabriela Amaral
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Set 10, 2017 13:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.