• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ANÁLISE REAL: FUNÇÃO LIMITADA

ANÁLISE REAL: FUNÇÃO LIMITADA

Mensagempor renataribeiro2017 » Sex Set 08, 2017 12:28

Por favor, estou com dificuldades nesta questão. Alguém pode me ajudar?

Seja f não decrescente em [1,+inf) e F(x)= Integral de 1 a x de f(t)/t dt com x > ou igual a 1 . Prove que f é limitada, isto é, módulo de f(x) < ou igual a k, qualquer que seja t pertencente a [1,+inf), então F(x)/logx também é limitada em [1,+inf) . Dica: Estime o módulo de F(x) e use o fato que o módulo da integral de g(x)dx é menor ou igual à integral do módulo de g(x)dx.
renataribeiro2017
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Set 06, 2017 18:48
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em matemática
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.