• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ANÁLISE REAL: FUNÇÃO LIMITADA

ANÁLISE REAL: FUNÇÃO LIMITADA

Mensagempor renataribeiro2017 » Sex Set 08, 2017 12:28

Por favor, estou com dificuldades nesta questão. Alguém pode me ajudar?

Seja f não decrescente em [1,+inf) e F(x)= Integral de 1 a x de f(t)/t dt com x > ou igual a 1 . Prove que f é limitada, isto é, módulo de f(x) < ou igual a k, qualquer que seja t pertencente a [1,+inf), então F(x)/logx também é limitada em [1,+inf) . Dica: Estime o módulo de F(x) e use o fato que o módulo da integral de g(x)dx é menor ou igual à integral do módulo de g(x)dx.
renataribeiro2017
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Set 06, 2017 18:48
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharelado em matemática
Andamento: cursando

Re: ANÁLISE REAL: FUNÇÃO LIMITADA

Mensagempor adauto martins » Ter Mai 01, 2018 19:14

\exists \delta\succ 0tal que:
\delta=min(inf(f(x))-1),existe M\succ 0,pois
F(X)=\int_{1}^{inf(f(x))}(dx/x)=log(inf)-log(1)=log(inf)\succ 0...
se F(x) ,e limitada em [1,inf(f)),cabe nos provar que:
F(x)/logx é limitada em [1,inf).de fato:
pois \exists \delta=min(inf(f)-1)\succ 0,e \exists N\succ 0,pois
F(x)/logx=\int_{1}^{inf(f)}(dx/x)=log(inf)/logx=log(inf)-logx \succ 0...,pois
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 692
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: ANÁLISE REAL: FUNÇÃO LIMITADA

Mensagempor adauto martins » Ter Mai 01, 2018 21:16

uma correção:
F(x)/logx=log(inf(f))/logx={log}_{x}inf(f)\succ 0,pois
1\preceq x \prec inf(f)...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 692
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.