• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resultado diferente do livro, ou errado? Integral

Resultado diferente do livro, ou errado? Integral

Mensagempor duduxo81 » Qui Ago 24, 2017 23:37

Bom galera minha dúvida é a seguinte.
Não é o primeiro exercicio que eu "consigo" achar uma resposta mas ela está bem distante da resposta do livro. Por exemplo no exercicio a seguir

\int\limits_{}^{}x^2\sqrt{4-x^2}dx

Eu fazendo aqui e ate o wolfram mostrou como resposta a seguinte equação:

2(\arcsin (\frac{1}{2}x)-\frac{1}{4}\cdot\sin (4\arcsin (\frac{1}{2}x)+C))

Mas no livro está de uma forma totalmente diferente

Segue abaixo a forma do livro
2\arcsin (\frac{x}{2})+\frac{x\sqrt{4-x^2}}{2}-\frac{x(4-x^2)(\sqrt{4-x^2}}{4}+C

Gostaria de saber se a minha resposta está errada?
Se não estiver, poderiam me mostrar aonde começa a diferir uma da outra?
Como posso verificar se a minha resposta está correta?

Agradeço desde já
duduxo81
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Jul 08, 2016 11:21
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciências Exatas
Andamento: cursando

Re: Resultado diferente do livro, ou errado? Integral

Mensagempor DanielFerreira » Sex Ago 25, 2017 23:30

Olá Dudu, boa noite!

Tua resposta está incorreta! Além disso, o WolframAlpha indica a resposta de acordo com o gabarito!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1670
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.