• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida fácil limites

Duvida fácil limites

Mensagempor mataprendizagem » Dom Ago 20, 2017 20:13

Boa noite galera, tentei fazer o exercicio de 4 jeitos diferentes mas nao deu certo . Alguem sabe?
para an-1 sendo an>= 2 calculei a2-1 = 1 então an=1+(-1)^²=2 e sucessivamente para 6 primeiros termos. Adotei 1 para an-1 em todos os termos da série zerando todos com expoente ímpar mas não estou certo disso.
Anexos
duvidalimite.jpg
mataprendizagem
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Ago 20, 2017 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: Duvida fácil limites

Mensagempor DanielFerreira » Sex Ago 25, 2017 22:36

Olá! seja bem-vindo(a)!!

Atente para o fato de n ser maior ou igual a dois. Assim, o que temos a fazer é determinar os seis termos substituindo...

Primeiro termo: a_2

\\ \mathsf{a_n = a_{n - 1} + (- 1)^n} \\\\ \mathsf{a_2 = a_{2 - 1} + (- 1)^2} \\\\ \mathsf{a_2 = a_1 + 1} \\\\ \mathsf{a_2 = 1 + 1} \\\\ \boxed{\mathsf{a_2 = 2}}


Segundo termo: a_3

\\ \mathsf{a_n = a_{n - 1} + (- 1)^n} \\\\ \mathsf{a_3 = a_{3 - 1} + (- 1)^3} \\\\ \mathsf{a_3 = a_2 + (- 1)} \\\\ \mathsf{a_2 = 2 - 1} \\\\ \boxed{\mathsf{a_3 = 1}}


Terceiro termo: a_4

\\ \mathsf{a_n = a_{n - 1} + (- 1)^n} \\\\ \mathsf{a_4 = a_{4 - 1} + (- 1)^4} \\\\ \mathsf{a_4 = a_3 + 1} \\\\ \mathsf{a_4 = 1 + 1} \\\\ \boxed{\mathsf{a_4 = 2}}


Agora é com você. Encontre \mathsf{a_5}, \mathsf{a_6}, \mathsf{a_7} e efetue a soma dos termos.

Feito isto, diga quanto encontrou como resposta, ok?!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.