• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida fácil limites

Duvida fácil limites

Mensagempor mataprendizagem » Dom Ago 20, 2017 20:13

Boa noite galera, tentei fazer o exercicio de 4 jeitos diferentes mas nao deu certo . Alguem sabe?
para an-1 sendo an>= 2 calculei a2-1 = 1 então an=1+(-1)^²=2 e sucessivamente para 6 primeiros termos. Adotei 1 para an-1 em todos os termos da série zerando todos com expoente ímpar mas não estou certo disso.
Anexos
duvidalimite.jpg
mataprendizagem
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Ago 20, 2017 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: Duvida fácil limites

Mensagempor DanielFerreira » Sex Ago 25, 2017 22:36

Olá! seja bem-vindo(a)!!

Atente para o fato de n ser maior ou igual a dois. Assim, o que temos a fazer é determinar os seis termos substituindo...

Primeiro termo: a_2

\\ \mathsf{a_n = a_{n - 1} + (- 1)^n} \\\\ \mathsf{a_2 = a_{2 - 1} + (- 1)^2} \\\\ \mathsf{a_2 = a_1 + 1} \\\\ \mathsf{a_2 = 1 + 1} \\\\ \boxed{\mathsf{a_2 = 2}}


Segundo termo: a_3

\\ \mathsf{a_n = a_{n - 1} + (- 1)^n} \\\\ \mathsf{a_3 = a_{3 - 1} + (- 1)^3} \\\\ \mathsf{a_3 = a_2 + (- 1)} \\\\ \mathsf{a_2 = 2 - 1} \\\\ \boxed{\mathsf{a_3 = 1}}


Terceiro termo: a_4

\\ \mathsf{a_n = a_{n - 1} + (- 1)^n} \\\\ \mathsf{a_4 = a_{4 - 1} + (- 1)^4} \\\\ \mathsf{a_4 = a_3 + 1} \\\\ \mathsf{a_4 = 1 + 1} \\\\ \boxed{\mathsf{a_4 = 2}}


Agora é com você. Encontre \mathsf{a_5}, \mathsf{a_6}, \mathsf{a_7} e efetue a soma dos termos.

Feito isto, diga quanto encontrou como resposta, ok?!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.


cron