• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise real

Análise real

Mensagempor matmatco » Qui Jun 29, 2017 08:28

O exercício é:
Prove que se f,g:\left[a,b \right]\rightarrow R são integráveis então são também integráveis as funções \varphi,\psi:\left[a,b \right]\rightarrow R, definidas por \varphi\left(x \right)=max\left(f\left(x \right),g\left(x \right) \right) e \psi\left(x \right)=min\left(f\left(x \right),g\left(x \right) \right). Conclua daí que são integráveis as funções {f}_{+},{f}_{-}:\left[a,b \right]\rightarrow R dadas por {f}_{+}=0 se f\left(x \right)\leq 0, {f}_{+}\left(x \right)=f\left(x \right) se f\left(x \right)> 0; {f}_{-}\left(x \right)=0 se f\left(x \right)\geq 0 e{f}_{-} = - f\left(x \right) se f\left(x \right) < 0 (supondo f integrável).

minha dúvida é como escrever que a oscilação da {f}_{+}\left(x \right) é \leq que a oscilação de f\left(x \right).
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Análise real

Mensagempor adauto martins » Ter Jul 11, 2017 15:12

w(f)-w({f}_{+}=sup(f)-inf(f)-(sup({f}_{+})-inf(f}_{+})=sup(f)-sup({f}_{+}+inf({f}_{+)})-inf(f)...inf({f}_{+}=inf(f),pq?...,logo:
w(f)-w({f}_{+})=sup(f)-sup({f}_{+}\prec \left|sup(f)-sup({f}_{+}) \right|\prec \epsilon,como
\épsilon \succ 0\Rightarrow w(f)\succ w({f}_{+})...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Análise real

Mensagempor matmatco » Qua Jul 12, 2017 17:08

Olá Adauto, tudo bem?

Não entendi o que vc quis dizer ficou muito confuso, mas consegui resolver a questão. Segue a solução caso queira saber.

Sabemos que f{(x)}_{+}=max(f\left(x \right),0) e f{(x)}_{-}=max(-f\left(x \right),0) então \left|f \right|= {f}_{+}(x) + {f}_{-}(x) , logo {f}_{+}(x)\leq\left|f \right| e  {f}_{-}(x)\leq\left|f \right| {f}_{+}(x)\leq\left|f \right| e {f}_{-}(x)\leq\left|f \right|, integrando nós temos \int_{}^{}{f}_{+}(x)\leq\int_{}^{}\left|f \right| sendo f integrável implica {f}_{+}(x) também é integrável.( análogo para {f}_{-}(x).
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Análise real

Mensagempor adauto martins » Qui Jul 13, 2017 13:06

a sua duvida era qdo as oscilaçao de f(x),w(f(x),[a,b])...{f}_{+},w({f}_{+},[a,b)},pela definiçao dada pelo problema,conclui o q. fiz...no ponto x=0,inf(f,...)=inf({f}_{+})...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.