• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise real

Análise real

Mensagempor matmatco » Qui Jun 29, 2017 08:28

O exercício é:
Prove que se f,g:\left[a,b \right]\rightarrow R são integráveis então são também integráveis as funções \varphi,\psi:\left[a,b \right]\rightarrow R, definidas por \varphi\left(x \right)=max\left(f\left(x \right),g\left(x \right) \right) e \psi\left(x \right)=min\left(f\left(x \right),g\left(x \right) \right). Conclua daí que são integráveis as funções {f}_{+},{f}_{-}:\left[a,b \right]\rightarrow R dadas por {f}_{+}=0 se f\left(x \right)\leq 0, {f}_{+}\left(x \right)=f\left(x \right) se f\left(x \right)> 0; {f}_{-}\left(x \right)=0 se f\left(x \right)\geq 0 e{f}_{-} = - f\left(x \right) se f\left(x \right) < 0 (supondo f integrável).

minha dúvida é como escrever que a oscilação da {f}_{+}\left(x \right) é \leq que a oscilação de f\left(x \right).
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Análise real

Mensagempor adauto martins » Ter Jul 11, 2017 15:12

w(f)-w({f}_{+}=sup(f)-inf(f)-(sup({f}_{+})-inf(f}_{+})=sup(f)-sup({f}_{+}+inf({f}_{+)})-inf(f)...inf({f}_{+}=inf(f),pq?...,logo:
w(f)-w({f}_{+})=sup(f)-sup({f}_{+}\prec \left|sup(f)-sup({f}_{+}) \right|\prec \epsilon,como
\épsilon \succ 0\Rightarrow w(f)\succ w({f}_{+})...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 684
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Análise real

Mensagempor matmatco » Qua Jul 12, 2017 17:08

Olá Adauto, tudo bem?

Não entendi o que vc quis dizer ficou muito confuso, mas consegui resolver a questão. Segue a solução caso queira saber.

Sabemos que f{(x)}_{+}=max(f\left(x \right),0) e f{(x)}_{-}=max(-f\left(x \right),0) então \left|f \right|= {f}_{+}(x) + {f}_{-}(x) , logo {f}_{+}(x)\leq\left|f \right| e  {f}_{-}(x)\leq\left|f \right| {f}_{+}(x)\leq\left|f \right| e {f}_{-}(x)\leq\left|f \right|, integrando nós temos \int_{}^{}{f}_{+}(x)\leq\int_{}^{}\left|f \right| sendo f integrável implica {f}_{+}(x) também é integrável.( análogo para {f}_{-}(x).
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Análise real

Mensagempor adauto martins » Qui Jul 13, 2017 13:06

a sua duvida era qdo as oscilaçao de f(x),w(f(x),[a,b])...{f}_{+},w({f}_{+},[a,b)},pela definiçao dada pelo problema,conclui o q. fiz...no ponto x=0,inf(f,...)=inf({f}_{+})...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 684
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 16 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.