• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] limites no infinito com raízes

[LIMITE] limites no infinito com raízes

Mensagempor camila_braz » Dom Jun 11, 2017 11:42

Boa tarde!
A questão pede para que eu calcule \lim_{x\rightarrow\infty} \frac{\sqrt[2]{x} + \sqrt[3]{x} }{x^2+3}

Eu tentei dividir tudo por x^2

\frac{\sqrt[2]{x} + \sqrt[3]{x} }{x^2+3}

Ficando assim o numerador:
\frac{\sqrt[2]{x}}{\sqrt[2]{x^4}} + \frac{\sqrt[3]{x}}{\sqrt[3]{x^6}} = \sqrt[2]{\frac{1}{x^3}} + \sqrt[3]{\frac{1}{x^5}}
E o denominador:
1+\frac{3}{x^2}

Então como a divisão por infinito tende a zero, eu encontrei: \lim_{x\rightarrow\infty}\frac{0}{1} = 0

Isso está correto? Abraços.
camila_braz
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jun 11, 2017 11:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)


cron