por Jadiel Carlos » Qua Mai 24, 2017 14:31
Olá Boa Tarde!!! Gostaria de saber como fazemos para mostrar que

usando a definição formal de limite.
-
Jadiel Carlos
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Seg Nov 07, 2016 00:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Definição formal de limite
por guilherme5088 » Sex Out 16, 2020 21:10
- 1 Respostas
- 5833 Exibições
- Última mensagem por adauto martins

Seg Out 19, 2020 18:56
Cálculo: Limites, Derivadas e Integrais
-
- Limites pela definição formal
por joaofonseca » Ter Out 11, 2011 09:38
- 1 Respostas
- 2588 Exibições
- Última mensagem por joaofonseca

Qua Out 12, 2011 19:29
Cálculo: Limites, Derivadas e Integrais
-
- [limites] Propriedades ou definição formal?
por jvabatista » Qua Jun 06, 2012 11:43
- 3 Respostas
- 3185 Exibições
- Última mensagem por adauto martins

Ter Out 14, 2014 20:05
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda com a definição formal de limites
por Gustavooguto » Seg Out 13, 2014 23:49
- 1 Respostas
- 2190 Exibições
- Última mensagem por adauto martins

Ter Out 14, 2014 11:19
Funções
-
- Limites pela definição formal
por ramoncampos » Ter Nov 01, 2016 21:20
- 4 Respostas
- 9241 Exibições
- Última mensagem por ramoncampos

Sex Nov 04, 2016 12:39
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 20 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.