• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral indefinida de funções trigonométricas

Integral indefinida de funções trigonométricas

Mensagempor dressa_mwar1 » Sáb Mar 11, 2017 11:16

\int_{}^{} \frac{secx senx}{cosx} dx
dressa_mwar1
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 11, 2017 11:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Integral indefinida de funções trigonométricas

Mensagempor lebzeit » Dom Mar 19, 2017 19:39

Boa noite, dressa_mwar1.

I = \int \frac{sec\left(x\right)sen\left(x\right)dx}{cos\left(x\right)}\:=\:\int \:\frac{1}{cos\left(x\right)}\:\frac{senx\left(x\right)}{cos\left(x\right)}\:dx\:=\:\int \:\frac{sen\left(x\right)}{cos^{^2}\left(x\right)}dx

Faça a substituição do tipo u=cos\left(x\right)

Tente fazer fazer sozinho(a) a partir dai.
lebzeit
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 19, 2017 19:27
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)