• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral indefinida de funções trigonométricas

Integral indefinida de funções trigonométricas

Mensagempor dressa_mwar1 » Sáb Mar 11, 2017 11:16

\int_{}^{} \frac{secx senx}{cosx} dx
dressa_mwar1
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 11, 2017 11:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Integral indefinida de funções trigonométricas

Mensagempor lebzeit » Dom Mar 19, 2017 19:39

Boa noite, dressa_mwar1.

I = \int \frac{sec\left(x\right)sen\left(x\right)dx}{cos\left(x\right)}\:=\:\int \:\frac{1}{cos\left(x\right)}\:\frac{senx\left(x\right)}{cos\left(x\right)}\:dx\:=\:\int \:\frac{sen\left(x\right)}{cos^{^2}\left(x\right)}dx

Faça a substituição do tipo u=cos\left(x\right)

Tente fazer fazer sozinho(a) a partir dai.
lebzeit
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 19, 2017 19:27
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59