• Anúncio Global
    Respostas
    Exibições
    Última mensagem

cálculo diferencial e integral II

cálculo diferencial e integral II

Mensagempor Luiz vicente » Seg Mar 06, 2017 13:30

A minha dúvida é com relação a esse exercício do cálculo da resolução desta integral com relação o volume de um cone?
A rotação da função y=1\2.x em torno do eixo dos X, gera um cone conforme figura anexada.
arquivei o gráfico porque não consegui coloca-lo junto ão texto. Más o gráfico está assim, ponto Y até o 2; X 0 a 4.
a) Determinar o volume desse cone usando a integral.
b) Determinar o mesmo volume usando a fórmula estudada em geometria: sendo r o raio da base e h a altura do cone, confirmando que dá o mesmo valor. Já iniciei os cálculos, só que os resultados são quebrados e não precisos, é isso mesmo em uns dos resultados cheguei a 10.666 pi
Luiz vicente
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Mar 06, 2017 12:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Química
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}