• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites no Infinito - Encontre r > 0 para um dado épsilon

Limites no Infinito - Encontre r > 0 para um dado épsilon

Mensagempor elisafrombrazil » Sáb Jan 21, 2017 10:35

Pela definição formal de limites no infinito: \forall   \epsilon >0, \exists r > 0 tal que se x > r \Rightarrow |f(x) - L | < \epsilon

Seja \  f(x) = \frac{x^2 + 3x -2}{2x^4 - 5x + 1} e seja \lim_{x \rightarrow +\propto }\ \frac{x^2 + 3x -2}{2x^4 - 5x + 1} = \frac {1}{2},

Dado \epsilon = \frac{1}{3}

Mostre que existe r > 0 tal que

|f(x) - \frac{1}{2}| < \epsilon
elisafrombrazil
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sáb Dez 31, 2016 10:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limites no Infinito - Encontre r > 0 para um dado épsil

Mensagempor e8group » Qui Fev 02, 2017 15:59

No denominador o termo dominante deveria ser x^2 ao invés de x^4 ...Do jeito exposto o limite vale zero e nao 1/2 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)


cron