• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo] Integral de linha

[Cálculo] Integral de linha

Mensagempor pedro22132938 » Sex Dez 30, 2016 01:28

O exercicio pede o calculo da integral de linha onde,\int_{}^{}y^2dx +xdy - dz e \gamma é a poligonal de vértices A0 = (0,0,0), A1=(1,1,1) e A2=(1,1,0), orientada de A0 para A2.

Parametrizei a curva gama, mas ao calcular a integral por partes, cheguei ao resultado 0, porém ao verificar a solução está 5/6. Alguém consegue chegar ao resultado e mostrar-me como?
pedro22132938
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Mar 22, 2015 17:11
Formação Escolar: GRADUAÇÃO
Área/Curso: EAD
Andamento: formado

Re: [Cálculo] Integral de linha

Mensagempor adauto martins » Dom Jan 01, 2017 14:32

vamos calcular a integral pelos caminhos {C}_{1},{C}_{2},
{C}_{1}:{A}_{0}\rightarrow {A}_{1},temos que:
0 \preceq x \preceq 1...0\preceq y \preceq 1...0\preceq z\preceq 1...


dx=dy  \Rightarrow \int_{{A}_{0}}^{{A}_{1}}(({x}^{2}+x))dx-dz)\int_{0}^{1}({x}^{2}+x)dx-\int_{0}^{1}dz=(({x}^
{3}/3)+({x}^{2}/2)[0,1]-z[0,1]=(1/3)+(1/2)-1=-1/6...

{C}_{2}:{A}_{1}\rightarrow {A}_{2},temos:


x=y=1\Rightarrow dx=dy=0......0\preceq z \preceq 1sentido negativo,logo:

\int_{{A}_{1}}^{{A}_{2}}(-dz)=[tex]\int_{0}^{1}-dz=\int_{1}^{0}dz=z[1,0]=1......logo o valor da integral sera a soma dos caminhos{C}_{1}+{C}_{2},ou seja:I=(-1/6)+1=5/6...
se tomarmos o caminho {C}_{3},ou seja {C}_{3}:{A}_{2}\rightarrow {A}_{0},teriamos o valor da integral igual a zero,ou seja:
{C}_{1}+{C}_{2}+{C}_{3}\Rightarrow I=0...,fechariamos a linha poligonal...
de fato:




{C}_{3}:{{{A}_{2}}\rightarrow {{A}_{0}}

z=0,dz=0...-dx=-dy,tanto x,y variara negativamente:

\int_{{A}_{2}}^{{A}_{0}}-({x}^{2}+x)dx=-(({x}^{3}/3)+({x}^{2}/2)[(1,1,0),(0,0,0)]=-((1/3)+(1/2)=-5/6...
I=(-1/6)+1-(5/6)=0...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Cálculo] Integral de linha

Mensagempor pedro22132938 » Seg Jan 02, 2017 00:29

Então, minha resposta está correta? De fato é 0 o resultado, pois tenho que fechar a poligonal não?
pedro22132938
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Mar 22, 2015 17:11
Formação Escolar: GRADUAÇÃO
Área/Curso: EAD
Andamento: formado

Re: [Cálculo] Integral de linha

Mensagempor adauto martins » Seg Jan 02, 2017 15:14

meu caro pedro,
sua resposta esta incorreta,pois vc usando o metodo de parametrizaçao deva ter fechado a poligonal...
a integral de linha mede a area abaixo da curva(caminho,linha,interseçao de superficies e etc...) em relaçao a um dos planos X0Y,X0Z,Y0Z...é como na integral de uma variavel,I=\int_{a}^{b}f(x)dx=A(x)......metodo da poligonal fechado tem seu uso no calculo de integraçao de variaveis compelexas,calculo do numero de residuos em um compacto qquer...entao é isso...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59