• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo] Integral de linha

[Cálculo] Integral de linha

Mensagempor pedro22132938 » Sex Dez 30, 2016 01:28

O exercicio pede o calculo da integral de linha onde,\int_{}^{}y^2dx +xdy - dz e \gamma é a poligonal de vértices A0 = (0,0,0), A1=(1,1,1) e A2=(1,1,0), orientada de A0 para A2.

Parametrizei a curva gama, mas ao calcular a integral por partes, cheguei ao resultado 0, porém ao verificar a solução está 5/6. Alguém consegue chegar ao resultado e mostrar-me como?
pedro22132938
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Mar 22, 2015 17:11
Formação Escolar: GRADUAÇÃO
Área/Curso: EAD
Andamento: formado

Re: [Cálculo] Integral de linha

Mensagempor adauto martins » Dom Jan 01, 2017 14:32

vamos calcular a integral pelos caminhos {C}_{1},{C}_{2},
{C}_{1}:{A}_{0}\rightarrow {A}_{1},temos que:
0 \preceq x \preceq 1...0\preceq y \preceq 1...0\preceq z\preceq 1...


dx=dy  \Rightarrow \int_{{A}_{0}}^{{A}_{1}}(({x}^{2}+x))dx-dz)\int_{0}^{1}({x}^{2}+x)dx-\int_{0}^{1}dz=(({x}^
{3}/3)+({x}^{2}/2)[0,1]-z[0,1]=(1/3)+(1/2)-1=-1/6...

{C}_{2}:{A}_{1}\rightarrow {A}_{2},temos:


x=y=1\Rightarrow dx=dy=0......0\preceq z \preceq 1sentido negativo,logo:

\int_{{A}_{1}}^{{A}_{2}}(-dz)=[tex]\int_{0}^{1}-dz=\int_{1}^{0}dz=z[1,0]=1......logo o valor da integral sera a soma dos caminhos{C}_{1}+{C}_{2},ou seja:I=(-1/6)+1=5/6...
se tomarmos o caminho {C}_{3},ou seja {C}_{3}:{A}_{2}\rightarrow {A}_{0},teriamos o valor da integral igual a zero,ou seja:
{C}_{1}+{C}_{2}+{C}_{3}\Rightarrow I=0...,fechariamos a linha poligonal...
de fato:




{C}_{3}:{{{A}_{2}}\rightarrow {{A}_{0}}

z=0,dz=0...-dx=-dy,tanto x,y variara negativamente:

\int_{{A}_{2}}^{{A}_{0}}-({x}^{2}+x)dx=-(({x}^{3}/3)+({x}^{2}/2)[(1,1,0),(0,0,0)]=-((1/3)+(1/2)=-5/6...
I=(-1/6)+1-(5/6)=0...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 675
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Cálculo] Integral de linha

Mensagempor pedro22132938 » Seg Jan 02, 2017 00:29

Então, minha resposta está correta? De fato é 0 o resultado, pois tenho que fechar a poligonal não?
pedro22132938
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Mar 22, 2015 17:11
Formação Escolar: GRADUAÇÃO
Área/Curso: EAD
Andamento: formado

Re: [Cálculo] Integral de linha

Mensagempor adauto martins » Seg Jan 02, 2017 15:14

meu caro pedro,
sua resposta esta incorreta,pois vc usando o metodo de parametrizaçao deva ter fechado a poligonal...
a integral de linha mede a area abaixo da curva(caminho,linha,interseçao de superficies e etc...) em relaçao a um dos planos X0Y,X0Z,Y0Z...é como na integral de uma variavel,I=\int_{a}^{b}f(x)dx=A(x)......metodo da poligonal fechado tem seu uso no calculo de integraçao de variaveis compelexas,calculo do numero de residuos em um compacto qquer...entao é isso...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 675
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?