• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Não sei montar a função - Ajuda por favor.

Não sei montar a função - Ajuda por favor.

Mensagempor Raphaelphtp » Ter Dez 20, 2016 10:15

Uma rede de água potável ligará uma central de abastecimento situada à margem de um rio de 500 metros de
largura a um conjunto habitacional situado na outra margem do rio, 2000 metros abaixo da central. O custo da obra
através do rio é de R$640,00 por metro, enquanto, em terra, custa R$312,00. Qual é a forma mais econômica de se
instalar a rede de água potável?
A.( ) 259,17metros abaixo da central de abastecimento.
B.( ) 249,17metros abaixo da central de abastecimento.
C.( ) 279,17metros abaixo da central de abastecimento.
D.( ) 219,17metros abaixo da central de abastecimento.

Não estou conseguindo montar a equação para então derivar, alguém poderia me ajudar?
Raphaelphtp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Dez 20, 2016 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura Matemática
Andamento: formado

Re: Não sei montar a função - Ajuda por favor.

Mensagempor adauto martins » Sex Dez 23, 2016 15:48

o caminho sera uma linha reta ate um ponto x\in [0,2000] e depois cruzando o rio em diagonal ate o bairro...
logo,a equaçao do custo sera dada por:

c(x)=312.(2000-x)+640.\sqrt[]{({500}^{2}-{x}^{2}}

c'(x)=-312-(1/2)2x/(\sqrt[]{{500}^{2}-{x}^{2}})=0......ai agora é achar x...termine-o...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 663
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Não sei montar a função - Ajuda por favor.

Mensagempor adauto martins » Qua Dez 28, 2016 11:30

uma pequena correçao...
eu errei o comprimento da diagonal q. é:
\sqrt[]{({500}^{2}+{x}^{2})},logo:
c(x)=312.(2000-x)+640.\sqrt[]{({500}^{2}+{x}^{2})}
c'(x)=-312+640x/(\sqrt[]{({500}^{2}+{x}^{2})}=0
\Rightarrow 640x/(\sqrt[]{({500}^{2}+{x}^{2})}=312...{500}^{2}+{x}^{2}=(640/312)^{2}.{x}^{2}...
x=\sqrt[]{{500}^{2}/3.2}\approx 279.05...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 663
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Não sei montar a função - Ajuda por favor.

Mensagempor Raphaelphtp » Qua Dez 28, 2016 12:14

Obrigado!
Raphaelphtp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Dez 20, 2016 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}