• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Não sei montar a função - Ajuda por favor.

Não sei montar a função - Ajuda por favor.

Mensagempor Raphaelphtp » Ter Dez 20, 2016 10:15

Uma rede de água potável ligará uma central de abastecimento situada à margem de um rio de 500 metros de
largura a um conjunto habitacional situado na outra margem do rio, 2000 metros abaixo da central. O custo da obra
através do rio é de R$640,00 por metro, enquanto, em terra, custa R$312,00. Qual é a forma mais econômica de se
instalar a rede de água potável?
A.( ) 259,17metros abaixo da central de abastecimento.
B.( ) 249,17metros abaixo da central de abastecimento.
C.( ) 279,17metros abaixo da central de abastecimento.
D.( ) 219,17metros abaixo da central de abastecimento.

Não estou conseguindo montar a equação para então derivar, alguém poderia me ajudar?
Raphaelphtp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Dez 20, 2016 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura Matemática
Andamento: formado

Re: Não sei montar a função - Ajuda por favor.

Mensagempor adauto martins » Sex Dez 23, 2016 15:48

o caminho sera uma linha reta ate um ponto x\in [0,2000] e depois cruzando o rio em diagonal ate o bairro...
logo,a equaçao do custo sera dada por:

c(x)=312.(2000-x)+640.\sqrt[]{({500}^{2}-{x}^{2}}

c'(x)=-312-(1/2)2x/(\sqrt[]{{500}^{2}-{x}^{2}})=0......ai agora é achar x...termine-o...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 675
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Não sei montar a função - Ajuda por favor.

Mensagempor adauto martins » Qua Dez 28, 2016 11:30

uma pequena correçao...
eu errei o comprimento da diagonal q. é:
\sqrt[]{({500}^{2}+{x}^{2})},logo:
c(x)=312.(2000-x)+640.\sqrt[]{({500}^{2}+{x}^{2})}
c'(x)=-312+640x/(\sqrt[]{({500}^{2}+{x}^{2})}=0
\Rightarrow 640x/(\sqrt[]{({500}^{2}+{x}^{2})}=312...{500}^{2}+{x}^{2}=(640/312)^{2}.{x}^{2}...
x=\sqrt[]{{500}^{2}/3.2}\approx 279.05...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 675
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Não sei montar a função - Ajuda por favor.

Mensagempor Raphaelphtp » Qua Dez 28, 2016 12:14

Obrigado!
Raphaelphtp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Dez 20, 2016 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59