• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo] integral dupla

[Cálculo] integral dupla

Mensagempor armando » Seg Dez 19, 2016 04:25

Olá a todos.
Alguém me pode dar uma ajuda com a seguinte integral dupla ?

\int\limit_{0}^{4}\int\limit_{x}^{3x}3\sqrt{16-x^2}dydx

Sei que o resultado é 128, mas não consigo chegar nele.

Antecipadamente grato
Armando
armando
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Abr 01, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Cálculo] integral dupla

Mensagempor armando » Qua Dez 28, 2016 03:29

Olá, sou eu novamente.
Pelo que andei pesquisando deve-se começar a resolução das integrais de dentro para fora.

\int\limit_{0}^{4} (\int\limit_{x}^{3x}3\sqrt{16-x^2}dy)dx

Resolvendo a integral interna \int\limit_{x}^{3x}3\sqrt{16-x^2}dy, numa calculadora TI-Nspire CX CAS, dá: 6x\sqrt{16-x^2}

O WolframAlpha para a resolução da mesma começa por dizer:

Aplique o teorema fundamental de cálculo.

A antiderivada de :\,\,3\sqrt{16-x^2}\,\,\,\,\,é\,\,\,\,\,3\sqrt{16-x^2}\,\,\, y:

=3\sqrt{16-x^2}\,\,y|_{y=x}^ {3x}

Avaliar a antiderivada dos limites e subtrair.

Mas como não estou inscrito, não mostra mais passos para além destes.
Alguém sabe como chegar até ,\,\,\,6x\sqrt{16-x^2}. É que a integral desta expressão, com limites de [0,4] em relação a dx eu sei como resolver de modo a chegar no valor 128.

Grato pela atenção
Amadeu
armando
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Abr 01, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Cálculo] integral dupla

Mensagempor adauto martins » Qui Dez 29, 2016 13:10

I=\int_{0}^{4}(\int_{x}^{3x}3.\sqrt[]{(16-{x}^{2})}dy)dx=\int_{0}^{4}3.\sqrt[]{(16-{x}^{2})}(\int_{x}^{3x}dy)dx=3.\int_{0}^{4}\sqrt[]{(16-{x}^{2})}(3x-x)dx=3.\int_{0}^{4}2x.\sqrt[]{(16-{x}^{2})}dx...,faz-se u=16-2x...du=-2xdx\Rightarrow I=-3.\int_{0}^{4}u.\sqrt[]{u}du=3.\int_{4}^{0}u.\sqrt[]{u}du...,agora é usar a integraçao por partes,pois chegou-se a uma integral do produto de duas funçoes u.\sqrt[]{u},cuja formula é dado por:
\int_{a}^{b}f.(g' )dx=f.g-\int_{a}^{b}g.(f')dx...,termine-o...
sugestao:u.\sqrt[]{u}={u}^{2}/\sqrt[]{u}...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Cálculo] integral dupla

Mensagempor pedro22132938 » Sex Dez 30, 2016 01:43

Como voce está integrando em y e sua função só depende de x, ela sai da integral como um constante
pedro22132938
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Mar 22, 2015 17:11
Formação Escolar: GRADUAÇÃO
Área/Curso: EAD
Andamento: formado

Re: [Cálculo] integral dupla

Mensagempor adauto martins » Sex Dez 30, 2016 15:44

é isso colega,vc integra mesmo q.y=f(x),x=f(y)...y=f(x),x=f(y)... como em derivadas parciais tbem...
uma peq. correçao na integral q. fiz e faremos o restante do exercicio:
na soluçao anterior chegamos em:
I=3.\int_{0}^{4}2x.\sqrt[]{(16-{x}^{2})}dx,fizemos
u=16-{x}^{2}\Rightarrow du=-2xdx...I=-3.(\int_{0}^{4}\sqrt[]{(16-{x}^{2})}(-2xdx)=-3.\int_{0}^{4}\sqrt[]{u}du=-2.{u}^{3/2}[0,4]=-2.(\sqrt[]{(16-{x}^{2})}[0,4]=-2.(-64)=128...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Cálculo] integral dupla

Mensagempor armando » Ter Jan 03, 2017 01:06

Boa noite a todos.
A minha dificuldade era nesta 1ª etapa, até chagar a: 6x\sqrt{16-x^2}

\int\limit_{x}^{3x}(3\sqrt{16-x^2})   =   (3\sqrt{16-x^2})y]^{3x}_{x}    =    3x(3\sqrt{16-x^2}) - x(3\sqrt{16-x^2}) =\\
 = (3x-x)\sqrt{16-x^2}   =  2x(3\sqrt{16-x^2})  =  6x\sqrt{16-x^2}

Com a solução desta primeira etapa, avancei para a segunda do seguinte modo :
Uma vez obtida a integral: \int\limit_{0}^{\limit{4}}6x\sqrt{16-x^2}\,dx

Fazendo u=16-x^2\;\;
\frac{du}{dx}=-2x
du=-2xdx
xdx=\frac{du}{-2}

Passando o inteiro \,6\, para fora da integral, e a variável x que estava multiplicando por ele para junto de dx, vamos ter:

6\int\limit_{0}^{\limit{4}}\sqrt{16-x^2}\,xdx

e deste modo podemos enunciar:

6\int\limit_{0}^{\limit{4}}\sqrt{u}(-\frac{du}{2})\;\,=\;\,6\int\limit_{0}^{\limit{4}}{u}^{\frac{1}{2}}(-\frac{du}{2})\;\,=\;\,-\frac{6}{2}\int\limit_{0}^{\limit{4}}u^{\frac{1}{2}}du\;\,=\;\,-3\cdot\frac{u^{\frac{3}{2}}}{\frac{3}{2}}\,\,=\\

=\,\,\,-3\cdot\frac{2}{3}\cdot u^{\frac{3}{2}}\;\,=\;\,-\frac{6}{3}\cdot u^{\frac{3}{2}}=\,-2\cdot u^{\frac{3}{2}}\,=-2(16-x^2)^{\frac{3}{2}}=\,-2\sqrt{(16-x^2)^3}[{_{_0}^{^4}}=\\

=\,\,\,[-2\sqrt{(16-4^2)^3}]\,-\,[-2\sqrt{(16-0^2)^3}]\;\;=\;\,(0)\,\,-\,\,(-128)\;=\;\box{128}

Creio não ter cometido nenhum erro. Se por acaso o fiz, por favor, me corrijam.

Compreendi o vosso método.
Obrigado pela ajuda.
armando
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Abr 01, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59