• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo 1] Exercício de taxas de variação

[Cálculo 1] Exercício de taxas de variação

Mensagempor gust15 » Sex Dez 16, 2016 18:35

Uma escada de 10m de comprimento está apoiada em uma parede vertical. Se a base da escada desliza afastando-se da parede a uma taxa de 0,5m/s, determine:

a) quão rápido o topo da escada está escorregando para baixo quando a base da escada está a 6m da parede?

b) O tempo necessário para que o centro de gravidade da escada desça 3m?

Bom, estava tentando resolver esse exercício. Na letra a) eu cheguei na seguinte resposta: dy/dt = -0,375 m/s
Mas na letra b) eu não sei como proceder... Se alguém puder confirmar se a resposta que encontrei na letra a) está correta e ainda me dizer como posso resolver a letra b) eu agradeceria muito
gust15
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Dez 16, 2016 17:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia elétrica
Andamento: cursando

Re: [Cálculo 1] Exercício de taxas de variação

Mensagempor adauto martins » Sáb Dez 17, 2016 15:48

a)
{l}^{2}={x}^{2}+{y}^{2}\Rightarrow d/dt({l}^{2})=d/dt({x}^{2})+d/dt({y}^{2})...

0=2x(dx/dt)+2y(dy/t)\Rightarrow dy/dt=-(x/y)dx/dt...
{l}^{2}={x}^{2}+{y}^{2}\Rightarrow y=\sqrt[]{({10}^{2}-{6}^{2}}=\sqrt[]{64}=8...,logo:
dy/dt=-(6/8)*0.5=-0.375(cm/s)...
b)
o centro de massa se desloca,tanto na direçao de x,como de y...entao sua velocidade é:
{v}_{c}=\sqrt[]{{dx/dt}^{2}+{dy/dt}^{2}}=\sqrt[]{{0.5}^{2}+{(-0.375}^{2}}=0.625 cm/s...
na direçao y,o centro de massa sofre a açao da gravidade,portanto:
y={v}_{c}.t-(g/2){t}^{2}\Rightarrow 3=0.625t-4.9.{t}^{2}...y={v}_{c}.t-(g/2){t}^{2}\Rightarrow 3=0.625t-4.9.{t}^{2}...,agora é resolver essa eq.de segundo grau,p/t\succ 0...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}