• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo 1] Exercício de taxas de variação

[Cálculo 1] Exercício de taxas de variação

Mensagempor gust15 » Sex Dez 16, 2016 18:35

Uma escada de 10m de comprimento está apoiada em uma parede vertical. Se a base da escada desliza afastando-se da parede a uma taxa de 0,5m/s, determine:

a) quão rápido o topo da escada está escorregando para baixo quando a base da escada está a 6m da parede?

b) O tempo necessário para que o centro de gravidade da escada desça 3m?

Bom, estava tentando resolver esse exercício. Na letra a) eu cheguei na seguinte resposta: dy/dt = -0,375 m/s
Mas na letra b) eu não sei como proceder... Se alguém puder confirmar se a resposta que encontrei na letra a) está correta e ainda me dizer como posso resolver a letra b) eu agradeceria muito
gust15
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Dez 16, 2016 17:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia elétrica
Andamento: cursando

Re: [Cálculo 1] Exercício de taxas de variação

Mensagempor adauto martins » Sáb Dez 17, 2016 15:48

a)
{l}^{2}={x}^{2}+{y}^{2}\Rightarrow d/dt({l}^{2})=d/dt({x}^{2})+d/dt({y}^{2})...

0=2x(dx/dt)+2y(dy/t)\Rightarrow dy/dt=-(x/y)dx/dt...
{l}^{2}={x}^{2}+{y}^{2}\Rightarrow y=\sqrt[]{({10}^{2}-{6}^{2}}=\sqrt[]{64}=8...,logo:
dy/dt=-(6/8)*0.5=-0.375(cm/s)...
b)
o centro de massa se desloca,tanto na direçao de x,como de y...entao sua velocidade é:
{v}_{c}=\sqrt[]{{dx/dt}^{2}+{dy/dt}^{2}}=\sqrt[]{{0.5}^{2}+{(-0.375}^{2}}=0.625 cm/s...
na direçao y,o centro de massa sofre a açao da gravidade,portanto:
y={v}_{c}.t-(g/2){t}^{2}\Rightarrow 3=0.625t-4.9.{t}^{2}...y={v}_{c}.t-(g/2){t}^{2}\Rightarrow 3=0.625t-4.9.{t}^{2}...,agora é resolver essa eq.de segundo grau,p/t\succ 0...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: