• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calculo I-exercicio resolvido

calculo I-exercicio resolvido

Mensagempor adauto martins » Seg Dez 12, 2016 18:31

mostre que a funçao y=\left|x \right| é continua,mas nao diferenciavel em x=0.
soluçao:
para mostrar q. uma funçao é continua em algum ponto de seu dominio(x={x}_{0}),deveremos mostrar que:
os limites laterais existem e sao iguais e tal que \lim_{x\rightarrow {x}_{0}}f(x)=f({x}_{0})......
temos que,pela definiçao de y:
\left|x \right|=x...x\succeq 0

\left|x \right|=-x...x\prec 0...,entao:
\lim_{x\rightarrow {0}^{+}}\left|x \right|=\lim_{x\rightarrow {0}^{+}}x=0=\lim_{x\rightarrow {0}^{-}}=\lim_{x\rightarrow {0}^{-}}-x=\lim_{x\rightarrow {0}^{-}}\left|x \right|,logo:
\lim_{x\rightarrow 0}\left|x \right|=0...
p/mostrarmos q. y é diferenciavel,deveremos mostrar que:
\lim_{x\rightarrow {0}^{+}}y'(0)=\lim_{x\rightarrow {0}^{-}}y'(0)...,fato esse q. nao se comprova,pois:
\lim_{x\rightarrow {0}^{+}}(\left|x \right|/x)=\lim_{x\rightarrow {0}^{+}}x/x=\lim_{x\rightarrow {0}^{+}}1=1\neq \lim_{x\rightarrow {0}^{-}}-x/x=\lim_{x\rightarrow {0}^{-}}-1=-1......
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 667
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.