• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calculo I-exercicio resolvido

calculo I-exercicio resolvido

Mensagempor adauto martins » Seg Dez 12, 2016 18:31

mostre que a funçao y=\left|x \right| é continua,mas nao diferenciavel em x=0.
soluçao:
para mostrar q. uma funçao é continua em algum ponto de seu dominio(x={x}_{0}),deveremos mostrar que:
os limites laterais existem e sao iguais e tal que \lim_{x\rightarrow {x}_{0}}f(x)=f({x}_{0})......
temos que,pela definiçao de y:
\left|x \right|=x...x\succeq 0

\left|x \right|=-x...x\prec 0...,entao:
\lim_{x\rightarrow {0}^{+}}\left|x \right|=\lim_{x\rightarrow {0}^{+}}x=0=\lim_{x\rightarrow {0}^{-}}=\lim_{x\rightarrow {0}^{-}}-x=\lim_{x\rightarrow {0}^{-}}\left|x \right|,logo:
\lim_{x\rightarrow 0}\left|x \right|=0...
p/mostrarmos q. y é diferenciavel,deveremos mostrar que:
\lim_{x\rightarrow {0}^{+}}y'(0)=\lim_{x\rightarrow {0}^{-}}y'(0)...,fato esse q. nao se comprova,pois:
\lim_{x\rightarrow {0}^{+}}(\left|x \right|/x)=\lim_{x\rightarrow {0}^{+}}x/x=\lim_{x\rightarrow {0}^{+}}1=1\neq \lim_{x\rightarrow {0}^{-}}-x/x=\lim_{x\rightarrow {0}^{-}}-1=-1......
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.