• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calculo I-exercicio resolvido

calculo I-exercicio resolvido

Mensagempor adauto martins » Seg Dez 12, 2016 18:31

mostre que a funçao y=\left|x \right| é continua,mas nao diferenciavel em x=0.
soluçao:
para mostrar q. uma funçao é continua em algum ponto de seu dominio(x={x}_{0}),deveremos mostrar que:
os limites laterais existem e sao iguais e tal que \lim_{x\rightarrow {x}_{0}}f(x)=f({x}_{0})......
temos que,pela definiçao de y:
\left|x \right|=x...x\succeq 0

\left|x \right|=-x...x\prec 0...,entao:
\lim_{x\rightarrow {0}^{+}}\left|x \right|=\lim_{x\rightarrow {0}^{+}}x=0=\lim_{x\rightarrow {0}^{-}}=\lim_{x\rightarrow {0}^{-}}-x=\lim_{x\rightarrow {0}^{-}}\left|x \right|,logo:
\lim_{x\rightarrow 0}\left|x \right|=0...
p/mostrarmos q. y é diferenciavel,deveremos mostrar que:
\lim_{x\rightarrow {0}^{+}}y'(0)=\lim_{x\rightarrow {0}^{-}}y'(0)...,fato esse q. nao se comprova,pois:
\lim_{x\rightarrow {0}^{+}}(\left|x \right|/x)=\lim_{x\rightarrow {0}^{+}}x/x=\lim_{x\rightarrow {0}^{+}}1=1\neq \lim_{x\rightarrow {0}^{-}}-x/x=\lim_{x\rightarrow {0}^{-}}-1=-1......
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 675
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.