• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo de várias variáveis] Problema de regra da cadeia

[Cálculo de várias variáveis] Problema de regra da cadeia

Mensagempor Hoteri » Seg Dez 05, 2016 23:56

Boa noite, amigos. Há muito tempo tento resolver este problema:

Seja $z=f(x,y)$. Considere $g(u,v)=uf(u^2, 2uv)$. Calcule $\dfrac{\partial^2g}{\partial u \, \partial v}(1,1)$ se $f(1,2)=4$, $\nabla f(1,2)=(3,-1)$,  $\dfrac{\partial^2f}{\partial x^2}(1,2)= \dfrac{\partial^2f}{\partial y^2}(1,2)=1$ e $\dfrac{\partial^2f}{\partial x \,\partial y}(1,2)=-1$.

Primeiramente, calculei \dfrac{\partial g}{\partial v}:

$\dfrac{\partial g}{\partial v}=u\cdot\dfrac{d}{dv}f(u^2,2uv)+0 \cdot f(u^2,2uv)=u\cdot\left(\dfrac{\partial f}{\partial x}(x,y)\dfrac{dx}{dv}+\dfrac{\partial f}{\partial y}(x,y)\dfrac{dy}{dv}\right)=2u^2\dfrac{\partial f}{\partial y}(x,y)$

E, então, $\dfrac{\partial^2g}{\partial u \, \partial v}$:

$\dfrac{\partial}{\partial u}\left(\dfrac{\partial g}{\partial v}\right)=\dfrac{\partial}{\partial u}\left(2u^2\cdot\dfrac{\partial f}{\partial y}(x,y)\right)=4u\cdot\dfrac{\partial f}{\partial y}(x,y)+2u^2\cdot\dfrac{\partial}{\partial u}\left(\dfrac{\partial f}{\partial y}(x,y)\right)= 4u\cdot\dfrac{\partial f}{\partial y}(x,y)+2u^2\cdot\left(\dfrac{\partial^2f}{\partial x\partial y}(x,y)\dfrac{dx}{du}+\dfrac{\partial^2f}{\partial y^2}(x,y)\dfrac{dy}{du}\right)=4u\cdot\dfrac{\partial f}{\partial y}(x,y)+2u^2\cdot\left(2u\dfrac{\partial^2f}{\partial x\partial y}+2v\dfrac{\partial^2f}{\partial y^2}\right)$

Não sei se estou fazendo isto corretamente. Sou novo nesta área do Cálculo e, no meio do caminho da resolução, sinto que me perdi e não sei como prosseguir a partir daqui ou relacionar com os dados disponibilizados no enunciado. Agradeço a ajuda desde já.
Hoteri
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Dez 05, 2016 23:39
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Cálculo de várias variáveis] Problema de regra da cadei

Mensagempor adauto martins » Qui Dez 08, 2016 09:09

primeiramente vamos encontrar uma expressao para z=f(x,y) usando as condiçoes a),b)...
a diferencial total de z=f(x,y) é dado por:
\Delta f(x,y)=(\partial f/\partial x).dx+(\partial f/\partial y).dy...com a condiçao b)teremos:
f(x,y)=3x-y+c,onde c é devido a integraçao indefinida...usando a condiçao a)f(1,2)=3.1-2+c=4\Rightarrow c=3...,logo:
z=f(x,y)=3x-y+3\Rightarrow g(v,u)=u.f({u}^{2},2uv)=u.(3{u}^{2}-2uv+3)\Rightarrow g(u,v)={u}^{3}-2{u}^{2}.v+3u...,usandos as outras condiçoes procede-se o calculo da derivada mista,calcule-o...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 675
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59